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1 abstract

I like to show in this article a new algorithm based on combinatorial mathe-
matics, that offers a method to determine the distribution of primes in N, to
compute new primes on a finite base of primes, and to proof primality, both
on small bases and just using multiplication. A combinatorial formula with a
simple method to generate disjunct subsets of N which are definitely multi-
tudes is given. Ordered by size, these products cover N succeedingly, and leave
gaps for other multitudes or for further primes. These gaps are unique for a
determinable interval, and narrow for the rest. The gaps that are necessarily
prime are situated between the first gap in the ordered structure of the set of
results Mand the gap that fits the double of this position, hence the p,11 gap
is the first prime gap in M, and the successors are prime until the gap for the
multitude 2 - p(,,1) Every further step of the algorithm’s computation with a
rising number of primes allows a more precise identification of a rising number
of prime-gaps in distinction to multiple-gaps.

Additionally, the computational algorithm can be used to prove primality
with analytical confirmation, as with the disjunctivity of the subsets the cardi-
nality of results must be equal to the results of the usual combinatorial compu-
tation implied. Hence, if a computation of all primes that are smaller than the
prime-to-be-proved are used within the computation, the result is absolutely
secure. But the formula offers additionally a probabilistic proof on the base of
subsets - and this is just the state of the art. As the formula shows already a
specific structure and method to identify all primes in N, further simple method
to distinguish the gaps of primes and gaps of multitudes should be a question
of refinements. Additionally, the algorithmic formula shows an argument for
the finiteness of primes. But, though puzzlement about Euclid was perhaps the
genuin reason to start this line of thought, this result seems less interesting than
the deep insight into N’s structure and generativity on primes.



2 introduction

We know, that N consists completely of primes and multitudes of primes.
Hence, N is a sum of two disjunct sets, that can very informally and heuristi-
cally be defined as such:

P:={p: pisaprime }

and M := { m: m is a multitude of at least two primes}.

This structure is genuinely combinatorial. We can obviously use the means of
a combinatorial calculus to determine the relation of primes and the non-prime
naturals (I use the expression 'natural’ to refer to natural numbers) that can
be generated by primes. Properly defined it will help us 1) to compute easily
the next larger prime on a given set of known primes, 2) to prove with this al-
gorithm whether a collection of succeeding primes are entirely primes or entail
a pseudo-prime or a multitude, 3) to compute the relative frequency of primes
and 4) to show with the algorithm that the total number of primes is finite,
at least with respect to the laws of analysis, as the number of natural numbers
that can succeed within the algorithm as a prime converges to 0.

To get a better surview of the magnitudes of primes in relation to N, we can

check how many naturals that are multitudes can be generated by multiplication
of a respective number of primes. The main idea is to get a set of multitudes,
with products that mirrow all possible combinations of primes as factors. As
multiplication is commutative, order is not taken into account, but as multitudes
of one and the same prime are trivially different, repetition is allowed. Our
combinatorial factor k starts with 1 (we could start with 0 to involve 1 into our
set M, but I favor a restritive handling of the concept of multitude and keep
the 1 outside). K ends with n, so that powers of primes up to the cardinality n
= ||P|| are allowed.
The main advantage of the combinatorial method is the disjunctiveness of the
sets that emerge by the combination without order and with repetition. As
combinatorial computation is mathematically already well known, we can make
use of the knowledge we have about this in general for the determination of
primes.

The elements of the disjunctive sets are products based on these combina-
tions, the combinations base on primes and are limited by the chosen cardinality
of primes. The primes shouldn’t have any gaps, but can be generated such that
they fulfill this demand.

The obvious advantage to the usual handling of the relative frequency of
primes is hence the non-arbitrariness of multitudes. This fits the fact concern-
ing N, that PUM = N\ {0,1}, and that we have a proportion of primes to
multitudes in N that is not arbitrary, but due to the combinatorial possibilities
of numbers and their products.

The usual estimation of the relative frequency of primes, is not just empirically
insufficiently confirmed with a horrible lot of just-probable primes or pseudo-
primes, but perhaps even circular: Even including pseudo-primes, which are



obviously multitudes, we don’t find such a lot of primes within the regions of
10™ with n > 10%, to be able to show by this kind of quasi-empirical evidence,
that the usual estimations of the frequency of primes is correct or reliable. But
nevertheless, this estimation is in common tests used to get reasonable evalua-
tions of the partially proofs that are necessary to believe in the sufficiency of a
primality’s probability.

This is especially annoying, as we can get an analytical determination of the
proportion of the number of primes to the number of multitudes in N, based on
a simple combinatorial formula for combinations with repetition without respect
to order. And furthermore, we can exactly determine the next prime within N
even without finishing the complete computation just using a respective realm
of the gaps in M.

3 The algorithm’s formula and an example

n is the number (the cardinality) of primes chosen from N, k is the number of
primes chosen for the combinations (products), and k < n to avoid doubling.
Hence, for the three primes 2,3,5¢e.g. 2 -2 and 2 - 2 - 2 are allowed, but 2% starts
not before 2,3,5,7. The sum that builds M is then the unity-set of all results
given by the combinations and multiplication of k with 1 < k < n primes in N.
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e.g. for three primes (2, 3, 5) we have a combinatorial set N with 19 members:
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Hence, we get 19 numbers of N with 3 primes, and have a proportion of 3
to 19, or, if we like to look at the disjunct sets, we have 3 primes in P and 16
multitudes in M.

The multitudes for the primes 2,3,5 (without the primes) are
(2 : 2)7 (2 : 3)» (2 ' 5)» (3 : 3) (3 ' 5)»
(5-5),(2:2-2),(2-2-3),(2-2-5),
(2-3-3),(2-3-5),(2-5-5),



(3-3-3),(3-3-5),(3-5-5),
(5-5-5= M with ||M]| = 16.

The uniqueness of the combinatorial results can be understood referring to
Euclid and his idea of a proof for the infinity of primes. We use likewise the
uniqueness of combinations and the combination of primes to conclude on the
uniqueness of results in respect to multiplication. We can show the essence of
this argument in a very short proof:

For the trivial claim, that different prime factors have different results, we
just use the simple law of multiplication in N without 0, that a-p # b - p.
As there is always at least one different factor in our combinatorial sets if we
combine without order and with repetition, we have merely disjunctive results
of multiplication in our set M.

To prove this, we just add a common factor to a different base:
n-a-p#n-b-pand we can look at the equivalence
n-a-p=n-b-p—a==~
Hence,if we consider a,b,m,n,p:
n-a-p#m-b-p—mn-a=m-bThen Ip1, ps, p3, p4 such that n-a =p1-pa2-...-pn
and m-b = ps - p4... - Py, such that po - ... Dy =p3 - Daeee - P
. If we look at the prime structure, we can divide the equation by the singular
primes:

P2 Pn = DP3Pdee Pl Pm

As all factors are prime, we can not divide any factor by partialisation.
Hence, with every division on the right side one of the factors of the other side
has to be deleted, too, e.g.:

P2 Pn = D3 Paee Pl : Pm

P2:.. Pn—1=P3" P4 Pm—1

We can repeat this until we arrive at the trivial equation 1=1.

Hence, all prime factors in a set must be equal, if any two of such combinatorial
sets are equal. As every combinatorial set has a different factor or at least one
or more factors more or less than every other set, all sets are disjunct and the
resulting products of the prime-sets all different: 1 to n different prime factors
exclude similar results. For this reason, we can take the result of the combina-
torial sum as the cardinality of multitudes (products) build by the given prime
set (the primes itself are included because of k = 1 allowed).

4 Generalisation

Hence, with M U P = N \ {0, 1}, we have a complete surview of the relation of
magnitudes of primes to multiples in N for subsets of N that entail succeeding
primes. As the combinatorial approach and the law of disjunctiveness of sets



do not depend on the special primes that are chosen, we should always get a
combinatorial set of multitudes, whose cardinality is calculable based on the
cardinality n (in our formula) of used primes p € P. Hence, the relative or ab-
solute frequency of primes to their combinatorial set in N does not depend on
the sequence of primes we choose, but merely on their number. The proportion
that is given by the special combinatorial formula is valid for every arbitrarily
chosen set of primes and equals the result we know from combinatorial mathe-
matics for the special formula given. We have with this equality to combinatorial
calculations indeed a simple proof for primality, as the result differs from the
usual combinatorial result, when non-primes in P lead to similar products in
M and in consequence, less than the necessary number of elements in M. Such
a result could be visible soon within a test with the first computations on just
two or three chosen elements, that lack cardinality because some factors are
twice within the numbers. This allows good and simple random tests of primal-
ity, of high primes with some factors that are considered to be probable divisors
- but this article tries to promote a more restrictive look at primes and primality.

5 Convergence and the question, whether the
number of primes is finite

If we have a look at n — oo, we see the possibility to raise the magnitude of
P with ever higher n (as our magnitude n = ||P||) and to conceive neverthe-
less this magnitude as finite in the sense of convergence to 0 in respect to the
number of multitudes. We have, in this way, a kind of ’paradox’, then: If we
raise n to n+1, we raise the cardinality of primes. But then we presuppose
that it is always possible to raise n to n+1, even if we show then, that this
cardinality ends in respect to the multitudes in N, that are presented by the
sums of combinations of primes. How to cope with this? The answer is in a
way simple, as the formula is a calculus, an algorithm to build not just multi-
tudes but to find primes, too. Hence, the next prime for the next cardinality
n+1 must be selected as a natural number that fills a gap in the set M that
itself was generated on a given set P with a cardinality of n primes. Before a
paradox arises, we will have arrived at a point, where no more gaps for further
primes are in the line of naturals in M, as N (always add 1 and 0, if you like),
is then generated as unity-set of primes and their multitudes. In short, it will
depend on the question whether the gaps between the multiples vanish by the
raising number of multiples that emerge with every new combination. If the
gaps vanish, there won’t be any more primes to raise n up to n+1. With the
laws of analysis, we should imagine this situation to arrive when the sequence’s
value has converged to 0.

Though I confess that further insight into the structure of the combinatorial
sets might be of use, the convergence should nevertheless be conceived to show,
that with the raising number of prime factors and multitudes, the given finite



primes can close gaps to become neighbours, like 2-2-5=20,3-7=21,2-11 =
22 ... € N. A list for the primes 2,3,5,7,11 is given in the appendix to this article.

The special kind of combinatorial structure we propose seem to guarantee
that the prime factors distribute products with different numbers of factors, and
thus cover succeedingly the whole region.

Especially, if anybody likes to conjecture with Euclid, that the faculty of the
multitudes given will build an interval that entails a further prime that is not
already in P, we can argue against this, that the faculty m! is already in M and
its gaps filled with combinations between m and m™, as the faculty is just the
product of every different element of the base set P. Euclid’s argument is weak
in the point that it just offers no special insight into the interval and how this can
be widened and filled with multitudes by the finite set of primes. Hence, what
he shows is that the faculty operation on one finite set of primes is insufficient
to find all primes, but not, that the repeating recurrence on widened finite sets
and the combinatorial approach do not lead to a set M without prime-gaps.
It seems as if the attempt to detect a further prime in the interval between
the faculty’s highest prime m and the result of the faculty had dissembled the
potency of multitudes within this very strange region of nearly infinite, but still
finite, numbers of primes n.

Hence, Euclid’s proof shows, that the faculty of primes for the finite set of
primes we choose is insufficient to build the natural numbers (even without 0
and 1). What our formula shows, is that the algorithm based on finite sets of
primes can actually be sufficient, when we - of course on the way to infinity -
need not any more primes or any primes beyond our base set P. In a way, the
formula is exactly acting on Euclidian finite sets of primes such that it allows
to reach complete sequences of natural numbers with a cardinality n to co. The
answer against Euclid is to use not one finite set, but a nearly endless number
of finite sets, and to use all the combinations of the finite selection of primes to
construct N. The criteria of finitness should be, that the algorithm stops when
no more prime gap is given. To take this to be the case, is at the state of the
art justified by an argument from analysis, that shows the convergence of the
algorithm’s series to 0.

The convergence, again, explains and proves, that we have a set M of mul-
titudes, that entails nearly infinite members, hence m™ with m € M is possible
and higher than M!, and, as the point of convergence is reached, all gaps within
M are already closed by the n primes in P and their multitudes. N will go on
then as a neighbour-sequence of multitudes, with powers allowed that succeed
the cardinality of the primes. That within the current Mersenne primes in re-
gions of 101:000:000 e have a good hint to believe that such a situation is in the
advent, when primes are reduced to powers of 2" +/- 1 and all other gaps can
be filled with multitudes. As the double 2 - (p,+1) of the first gap in M, that
is always prime, is the upper limit of the gaps in M that are necessarily prime,
the approximation of highest primes to such a power of 2 could show that the



prime after the first gap, ppye, shifts more and more towards the upper limit
2(pn+1), what might mean, that at a certain stage of n — oo, the occurence of
such a second gap might end.

6 Proof for the convergence of the series
2 ()
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With the binominal rule for n > 2 we have:

27 = (1+1)" = 14+n+ 2070 4 > netl) >l

Hence, g+ < 22 < 2 with [2| < € for nearly all n.

So, we have a formula that gives us the distribution of primes within their
multitudes, and with both disjunct sets of P and M the complete set N. The
formula is not only useful to determine the specific 7(z) on the base of an abso-
lute frequency, but allows us even to determine exactly the number of primes for
any finite number of natural numbers, as the single members of the sequence are
uniquely determined: with a given number of primes, one and only one number
of multitudes in the combinatorial structure can emerge. We just have to shift
the attempt to calculate numbers of primes within an open interval at the first
place. If we want to get an exact information about such an interval, we just
have to look at the respective sets of multitudes first.

As the relation of multitudes is given by two laws, the rule for combinations
with repetition ("J“;; _1), and the rule of N to be the unity-set of the set of primes
P and the set of multitudes of primes M, the calculated relation of numbers of
primes and number of multitudes is far more reliable than any estimation that

is relative to an arbitrarily chosen interval or magnitude of natural numbers.



The relative frequency of primes within a realm of N is for every set P:

LTI
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e.g. for ||P|]|=T:

1716 + 924 + 462 + 210 + 84 + 28 + 7 = 3431
or ||P|| = 70:
70 + 2485 4 59640 + 1088430 + 16108764 4 65 further values,

up to combinations of all 70 elements of P with repetition, that means, p7o™°
included.

We should remember, that N is definitely a unity of primes and their multi-
tudes. Hence, the relation that becomes obvious here is the calculable relation
that is given in N. The great advantage in comparison to probabilistic estima-
tions on arbitrary subsets with an arbitrary cardinality is, that the cardinality of
the combinatorial set M follows by the capability of n primes to build products
with restricted powers. Hence, if we like to become such metaphysical that we
talk about the existence of numbers in N, the combinatorial calculation shows
the cardinality’s proportion of existing primes to existing multitudes. We have
already explained that N is structured in this way. Hence, we have no good
reason to look at the frequency of primes and the distribution of primes within
N otherwise.

7 Some suggestions about the prime-gaps in M

Fortunately,as multitudes explode on prime combinations, the gaps within M
are quite narrow and easy to determine. The first gap after ordering the ele-
ments of M by size is always a prime gap, and some further primes are between
this new prime and its double, as this 2 - p,11 will be the first gap filled with
the next combinatorial calculation.

In this way, we can give a more precise approach to the problem than Euclid,
though we do not necessarily believe that such gaps will always exist. However,
if we keep the already given multitudes for further constructions, we have just
to add the combinatorial products that emerge by adding the new prime to the
sets, and widening these with one more factor. A small basis of primes and a
small selection of combinations is sufficient to get narrow intervals.

Within these intervals the gaps can be checked by progressing the procedure or,
if we think this is sufficient for a case, by random checks on the base of small
selections of primes in P, and the prime to be checked in P. The combinations



on these random bases should fit the regular cardinality, as this guarantees co-
primality. But as my attempt is an algorithm without principles of random, and
not an estimation of primes in N, but a calculation, I think it can be refined to
describe and calculate the respective sequences of prime-gaps generally, though
this is not subject of this article.

8 Advantages over common methods

However the weaknesses of Euclid’s proof are repaired within the contempo-
rary literature, all proofs depend on the uniqueness of division of any natural
number, where the discussion focuses on. It is probably wrong to look at this
as a problem, as we can easily show, that for the interesting subsets of N, we
can show how they are generated as disjunctive, therefore uniquely determined
products of some primes. After having refered to the problems in Euclid’s argu-
ments for an infinity of primes (like the unprovability of infinite primes for every
modular subset in N), and to alternative, contemporary proofs for the claim of
infinity, Steuding 2001 explains, that the still not completely proved uniqueness
of composition experiences an analytical approach with the (-function (Steud-
ing 2001: 16). An investigation into the argument leads to the weak law of large
numbers P(p|n):

limg o0 % = %

It should follow by this law, that the probability of n arbitrarily chosen nat-
ural numbers are not divisible with a prime p (are coprime to this prime p)
equals (1 — (pi)

This leads to the probability, that n arbitrarily chosen natural numbers are
coprime (do not have common factors):

P(ggT(my,....,my) = 1) = Pr(1 — (pi)) = ﬁ

=5 =0.608(35)

Steuding (2001:39, log is In) shows that the highest value of the w(x) factor
(estimated as 2.6) is 3:

|2 p<a lo;fp — logz| < 3.(Steuding 2000: 20), where 7(z) is in the (-function:

The zeta-function leads to a more precise number of primes (Steuding 2001:
39) and supports different elementary and analytical proofs of the Gaussian
assumption. It gains its value as a kind of combination of Euler’s number theo-
retical argument, that the roots of the (-function equal the distribution of primes
within the cosets (Steuding 2001: 36), and the Gaussian assumption. The con-
stant ¢ within the (-function then shows the regular distribution of primes in



the cosets and allows finally to prove the 'Primzahlsatz’ with the result of

m(x) = b’;fi}gogn (Steuding 2001: 45)

The argument seems to rely on an analogy to the asymptotical values of the
(-function and supports not exactly a generalisation of the Gaussian assump-
tion, but the underlying assumption of a regular distribution of primes within
the cosets. Hence, it looks vulnerable to a rebuilding of primes and N based on
primes and their multitudes.

However, with a strong simplification, the relative frequency of primes in N is

o _ 1
2in=2 = 3n - 10"
We show the quite obvious fact that this series diverges:

With 26n -10™ .

10”2671 (1+9) 26n
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53.4.56.7.82.6n for n > 9 we have

(n—9) > %n,
(n—8) > In,
(n—17) > gn,
(n—6) > 3n,
(n—>5) > %n,
(n—4) > gn,
(n—3) > %n,
(n—2)> %n,
hence, L n(n=1)(n— 2)(7_.3.)4315.6‘1.)7(.220)? B)(n=")(n=8) > ;z_z

and > n. Hence, with n — oo the series is divergent (Duma 1984).

Additionally, we can look at the absolute magnitudes of primes which are
added with every succeeding n in 10™:
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A chart gives the following data:
25 primes in 10%| - 6.72
= 168 in 103 - 7.31

= 1229 in 10| - 7.80
9592 in 10| - 8.18
78498 in 10| - 8.466
664579

5761455

50847534

455052511
4118054813

The primes seem to tend to grow with a multitude of 9 for every added
power of 10™. Within every new realm of 10™ we might think of having

1

g 10" — m -10=1 as number of new primes, what is about

(9-n—10)-10"~1
2.6:n-(n—1)

To check how this series progresses, we can look at the factorial form:

10 _
(2~6~(3L—1) - sy 1007

10 : . 9
and as o (n=T) 1 faster convergent than 54 =Ty

because of the higher power of n, we see that the difference to the schema
for the complete frequency declines, hence, the amount of new primes rises, and
such, the proportion keeps the line. At least it should, as we accept this schema.
But with the evidence given by the combinatorial argument and respecting the
weak probability based confirmation of primality, this estimation seems far too
high.

If we have a look at Mersenne primes which are proved by a kind of Eu-
clidian algorithm and probably completely, these are far too less than we would
need to confirm the Gaussian assumption for high n. The Gaussian assumption
has its name because it was an observation based on quite small numbers - and

11



faces now a lack of evidence given by really high primes, e.g. the upper 1000.
The discovered high Mersenne primes change in the first or second digit of the
exponent, but they should succeed in every digit of the exponent. Hence, the
distances don’t fit to the Gaussian suggestion at all.

Third, the identification of Non-Mersenne primes in usual tests is not just
unreasonably based on magnitudes of the realm, but circular in respect to the
estimation of the primes distribution in N. Hence, if at all taken into respect,
the realm is considered to fit into the ﬁ schema, that can not be proved by
the evidence given by numbers in N itself.

Looking at the usual test of primality, we have to notice a circularity in
the methods not just for proving primality, but for the evidence we get for the
reasonableness of the ﬁ assumption, too. The Miller-Rabin-Test, which is
most often used for primes of intermediate size with powers like 101990, is based
on the probability assumption:

for a natural number n and a set A:={a| n is a strong pseudo-prime relative
to base a} with an approximation of

A< g-6(n) & A-6(n) < 1.
(primzahlen.zeta24.com)

The probability of a failure (that the result does not fit the hypothesis, not,
that the hypothesis is generally misled) is reduced by repetitions, about k =
100 for a usual test. By this method, the probability of a failure is reduced to
%k with the result of a probability of 1051 = 0,00000 00000 00000 00000 00000
00000 00000 00000 00000 00000 00000 00000 1. This seems impressive, but it
is not. The result is just, that the number is a prime or a pseudoprime, that
is, a number which is divisible into two large primes. Hence, first at all, what
we judge to be primes are not primes in the important sense of the restrictive
distinction between primes and multitudes. A pseudoprime is definitely a mul-
titude of a prime and would destroy a combinatorial system completely.
Furthermore, a 10%! probability of a failure is high relative to the magnitude
of the realm we are talking about - if we prove primes with about 3000 digits,
what is the intermediate size of well known primes, a calculation on 100 bases
and a probability of 106! seems far too less.

The circularity of this test is obviously, that it presupposes to have already a well
and formally proved, reliable knowledge about the distribution and frequency of
primes within the realm of N. Hence, with proof-methods like the Miller-Rabin
test, we seem to confirm these assumptions, but really depend on them as we
don’t leave the realm of probabilities. To judge about the proportionality of
primes to ‘other’ natural numbers (their multitudes) by using enumerations of
primes within arbitrarily chosen intervals of N seems hence completely mud-
dling, and should give way to the proposed computational algorithm that is
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founded in the abstract relation of primes and their multitudes within N.

9 An algorithm for the detection of primes and
the calculation of their relative frequency in
subsets of N

I think the amount of recapitulation and precision of a mixture of intuition,
observation and the authority of Gauss in the common literature is not really
necessary to get an approximation to the proportion of primes and naturals and
the distribution of primes in N. To discuss the problem in the common way
creates itself obstacles by its linear view of numbers - that we should ask for the
cardinality and distribution of primes by looking at a linear constructed set of
naturals, built by their own recursive rule n :=n+1. This obviously dissembles
the way how primes and their multitudes arrange with each other in N.

With looking at primes first, we can build multitudes for M, an ordered
structure of neighbours in M U P and a clear structure of the distribution by
the combinatorial operations given with

ST
n ntk—1)!
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with n = [|P|| , k < n and the computation of multiplication on the chosen
combinations of numbers:

For P=2,3
(2,2)=2-2=4
(2,3)=2-3=6
(3,3)=3-3=9
(2)=2
(3)=3

Hence we get a set 2,3U4,6,9
and the gaps 5,7,8, which are just interesting because they should entail the
next prime, (if there is still one). We can assume that the lowest number with
the set of gaps is the candidate for primality, and that the specific magnitudes
of primes in the gap-sets should be determinable.

We start with the next prime-set:
For P =2,3,5:

Using our formula, we get 16 numbers of N with 3 primes, and have a pro-
portion of 3 to 19, or, if we like to look at the disjunct sets, we have 3 primes
in P and 16 multitudes in M.
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he multitudes for the primes 2,3,5 without the primes are
©2),(2-3),(2-5),(3-3),(3-5),(5-5),
-2:2),(2-2-3),(2-2-5),
-3:3),(2-3-5),(2-5-5),
-3:3),(3-3-5),(3-5-5),
-5-5) = M with ||M]|| = 16.
Including the primes 2,3,5 we have 19 numbers, the result of the combina-
torial sum:

2,3,4,5,6,8,9,10,12,15,18,20,25,27,30,45,50,75,125

again with gaps that are filled in the next step, when we include 7 as prime
and a multiplication of up to four numbers. Again the lowest gap is the next
prime.

We can proceed with this algorithm endlessly, and will get a determined and
simple criteria whether a number is a prime or not: If we get a number from the
gap-list twice in the set of multitudes, we have multiplied a multitude. Hence,
the provability of magnitudes, that is provided by the formula, is sufficient for
decidability, whether a set is correctly calculated by adding one and only one
prime to P. E.g., if we use 4 instead of 5 for P = 2, 3,4, we get

22203209, (2.2-4). (2.3 3)
(2-32).(2-4-4),(33-3),(3-3- 1)
(3-5-4),(4-4-4)

4%, 6, x8%, 9,12, 16, %8,
12,16, 18,24,32,27,48,60,64. As we have multiplied multitudes, we have a dou-
ble number 8 in the set and a repetition of one of our pseudo-primes, and hence
not the correct cardinality of 16 in the combinatorial set M.

10 The gaps and suggestions for short proce-
dures

A possible conjecture to our combinatorial algorithm might be, that we need a
special reason not to compare the given number of primes with the infinity of
powers they may have. This is justified by the restriction to defined methods
of computation, especially multiplication within a power that is defined by the
cardinality of primes we operate on. We can nevertheless multiply given mul-
titudes endlessly, even if primes might end, and though the concepts of growth
and identity of numbers are perhaps different within this realm, could probably
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not fit into our concept of existence or fit even better in current concepts of
physics.
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12 Appendix: List of multitudes of primes (2,3,5,7,11)

2 54 21 660 1815 6125
3 N 1873 6655
g 86 243 ggs 1925 6875
60 25 g0y 2058 7203
6 63 250 200 2079 7546
Toee 252 . ~ {
8 =0e 726 21356 7623
70 264 217 -
9 4y B AT 7986
10 2 2700 759 2208 8083
" fi’,? 33?’; 770 2310 8470
2 T e 201 8575
s b sT 2420 9075
6 g4 1 815 2450 o317
Y300 g2 473 :
1B 88 9625
20 o 308 891 2541 11319
21 g 13924 2625 g
2 g 30 945 2662 | go9
2 iﬁf} 343 g8 2695 12&(%
25 s 350 ggp 2750 O %
a7 363 3025 an
108 900 1310
28 375 3087 13310
3 10 gng 1029 Tl 13475
2 112 278 10s0 3123
. - 385 - H:§34 1'45‘41
13 120 59, 1078 CST o gyns
3 121 L. 1089 3267 7
3 125 % qp 3388 00
403 143 17787
a0 a6 o0 1125 3430 18634
42 3132 = 1155 346:\ igssg
s 135 MO0 30
45 140 W o128 3673 -

48 gy 450 1250 gy 21T
49 150 462 1323 3ssp 264l

50 a4 484 1331 3993 27951
54 162 490 137 4125 29282

168 485 1375 4235 20645

168 300 1386 4373 33275
176 525 1452 4802 41503
176 539 1470 4851 43923
180 350 1485 5082 46583
189 367 1540 3145 63219
196 388 1573 5324 73205
198 594 1617 5390 102487
200 605 1630 3443 161031
210 616 16594 5775

220 625 1715 5929
225 630 1750 6030
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